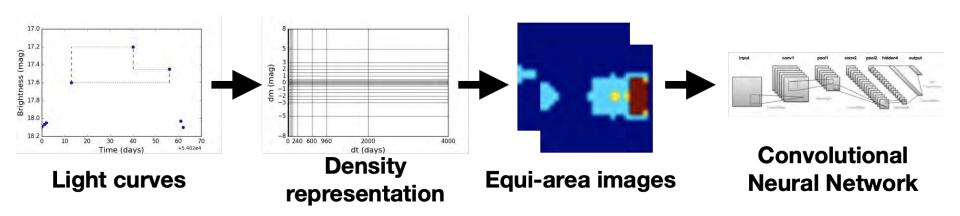
Diverse Astronomy Applications of Deep Learning



Ashish Mahabal AY 119, Caltech, 2025-05-06

Broad areas (by type of data)

Optical astronomy

Images

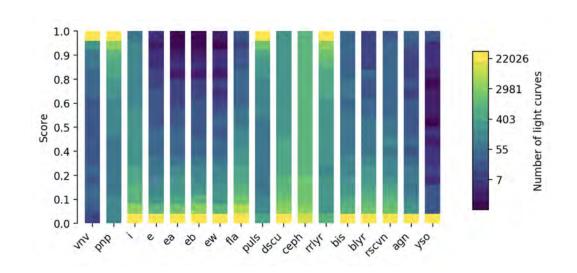
Spectra

Time series

Radio, X-ray etc.

Gravitational waves

Neutrino



By area of astronomy

Transients

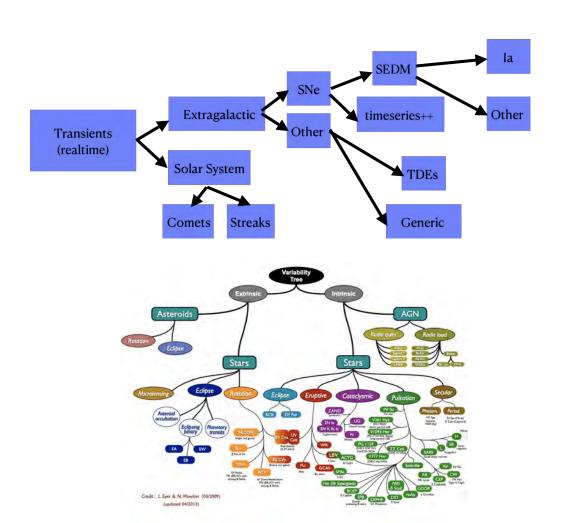
Detection

Classification

Variable stars

Solar System

Exoplanets



Tools

Decision trees

Random forests and variants

Convolutional Neural Networks

Variatioanal Auto Encoders

Transformers ...

Always use the simplest Do ample visualization Check for overfitting

Optical images

SN Hunt, Galaxy Zoo — Tools to build training samples

Zooniverse

ZARTH Citizen science possibilities

Specialized projects close to domain expertise

ZTF - RB

ZTF - streaking asteroids

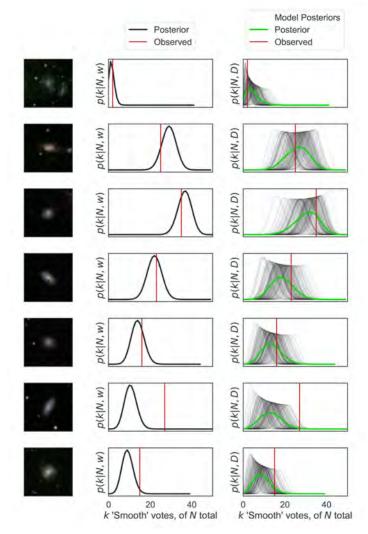
Roman (example dataset on GitHub)

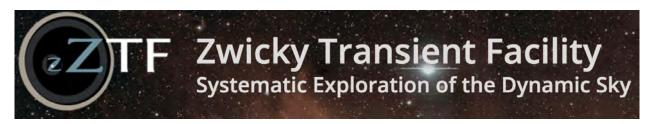
Bayesian CNNs

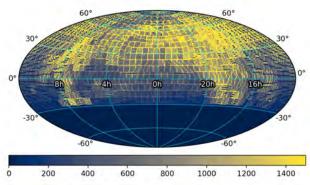
Walmsley et al. 2020

Smooth/featured galaxy - first Q in Zooniverse DT

Bayesian Active Learning by Disagreement, BALD





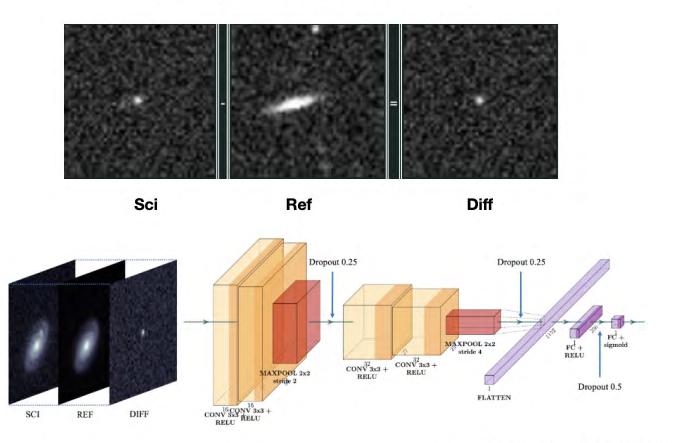


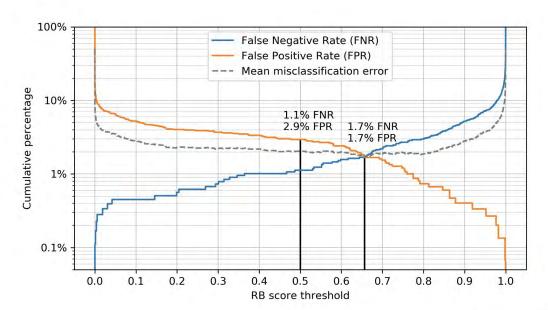
Sky coverage and number of observation epochs in ZTF.

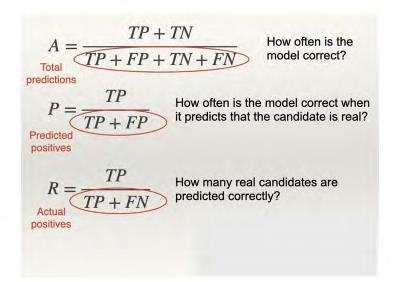
Example Query using the APIs

wget "https://irsa.ipac.caltech.edu/ibe/search/ztf/products/sci?
POS=255.9302,11.8654&WHERE=obsjd>2458219.9678+AND+obsjd<2458228.8155+
AND+infobits<33554432" -O out.tbl

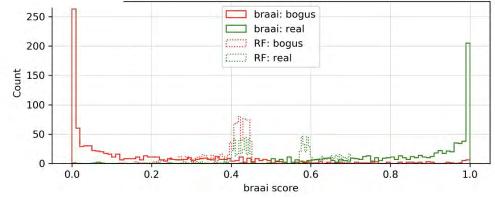
ZTF Real-Bogus separation ('braai')







ACAI filters for Fritz b, h, n, o, v



Deep Learning with AStreaks

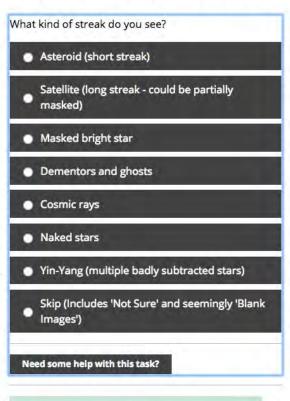
These are ghosts and dementors

This is how a real asteroid would look. Short streak.

Another satellite trail

A satellite trail. Note that part of it is masked out. and the unmasked trail is longer.

A masked bright star



.

Show the project tutorial

ZTF DeepStreaks

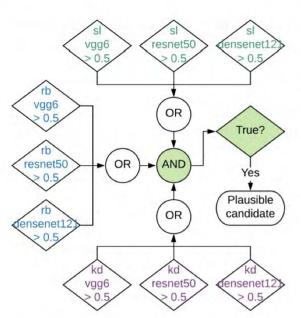
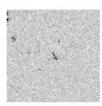
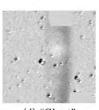
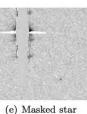
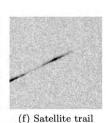


Figure 2. Decision logic used by DeepStreaks to identify plausible streaks. The problem is split into three simpler sub-problems, each solved by a dedicated group of classifiers assigning real vs. bogus ("rb"), short vs. long ("sl"), and keep vs. ditch ("kd") scores. At least one member of each group must output a score that passes a pre-defined threshold. See Section 2.1 for details.

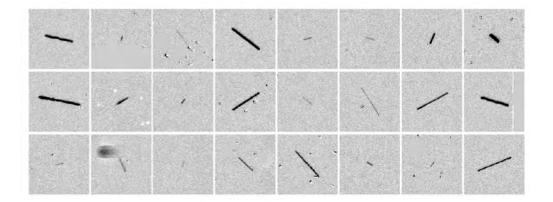








(a) Bad subtraction (b) Cosmic ray (c) "Dementor" (d) "Ghost"

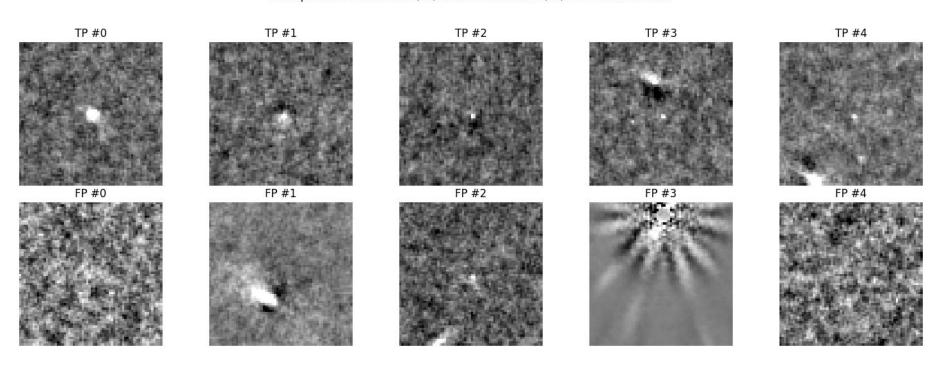


CNNs

Duev, Mahabal, ... arXiv:1904.05920

Training sample (True Positives and True Negatives)

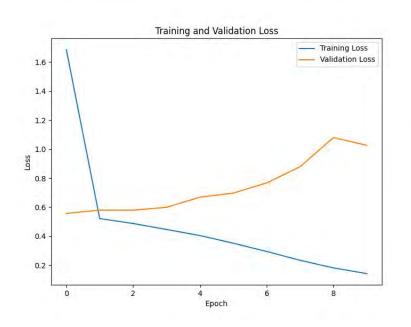
Examples of True Positives (TP) and False Positives (FP) with ZScale Stretch

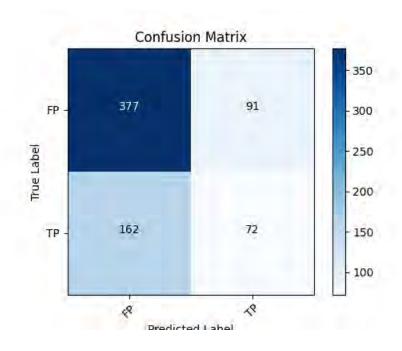


~1500 TP and ~3000 FP used right now

Roman Simulations

Out-of-the-box poor results



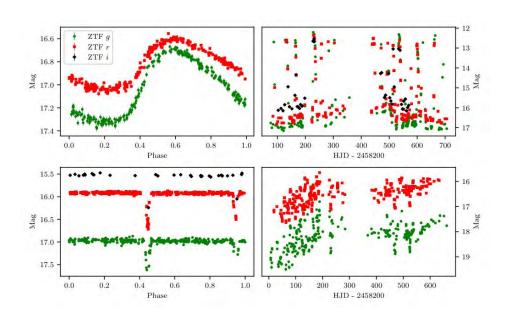


Issues with sample size, purity, normalization, ...

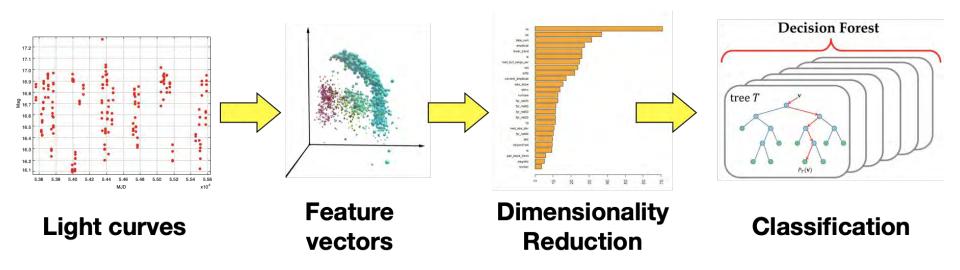
Time series

Irregular
Large gaps
Heteroskedastic

Important tasks:
Classification
Period finding
Prediction



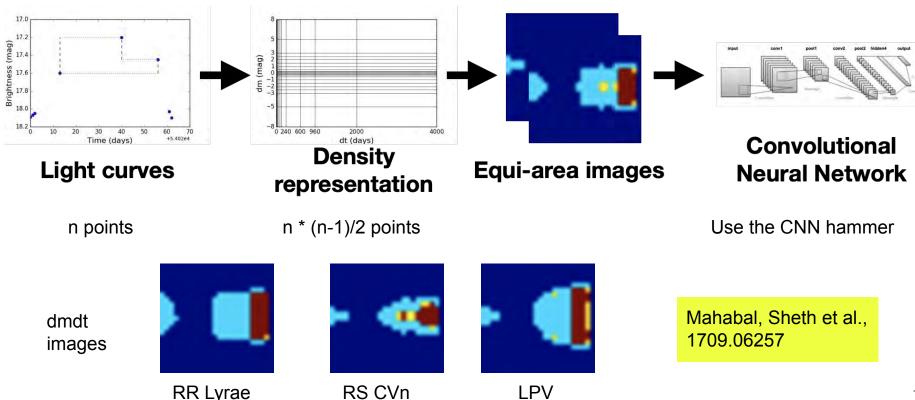
Light curves (time series) are the primary currency



Domain knowledge/subjectivity

Survey Differences: area, bands, cadence, depth, exposure, ...

Light curves are typically heteroscedastic, sparse, irregular



Diagnosing LIGO lockloss using auxiliary channels

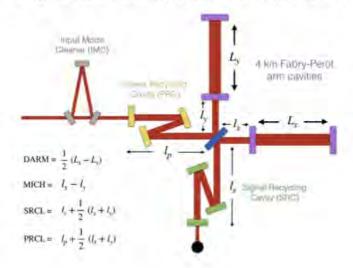
Motivation

Lockloss events due to environmental events lead to loss of observation time Monitor and diagnose lockloss events as they occur

Goals

To find a minimal set of auxiliary channels that serve as good predictors for lockloss events

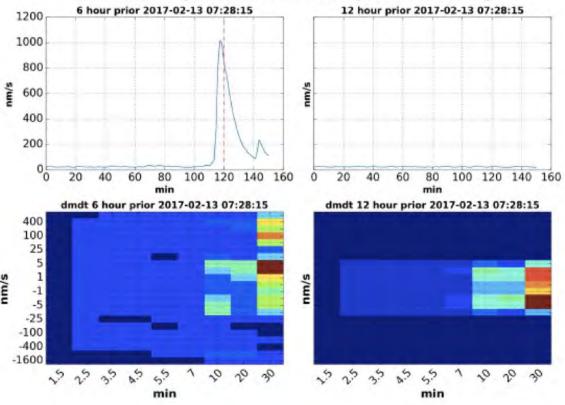
Diagnosis of interferometer behavior leading to lockloss events

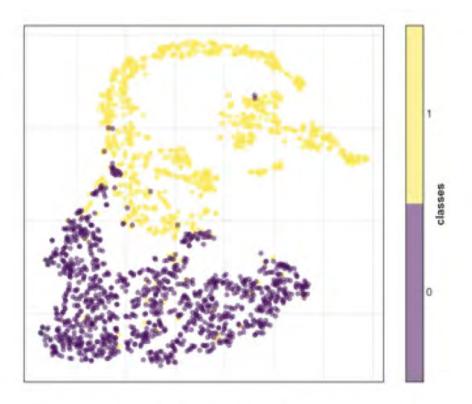


With Ayon Biswas and Jess McIver

Effect of earthquakes

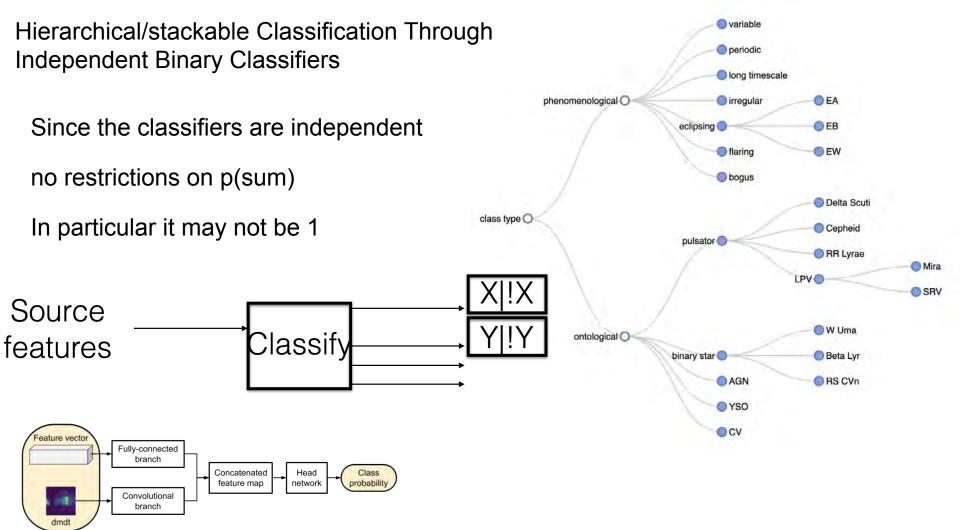
time: 2017-02-13 07:17:12, mag: 5.3, loc: 92km S of Tok, Alaska, dist: 2310.29589934 km||time: 2017-02-13 07:20:39, mag: 4.4, loc: 156km WSW of Hihifo, Tonga, dist: 8945.84873213 km||





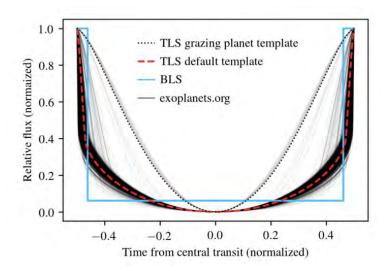
POP+SRCL+MITCH

Nearly clean separation of lock-loss events in GW detectors using cavity channels



Exoplanet candidates using TESS

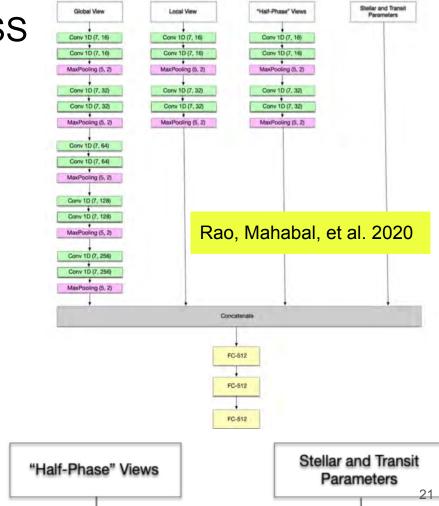
Local View

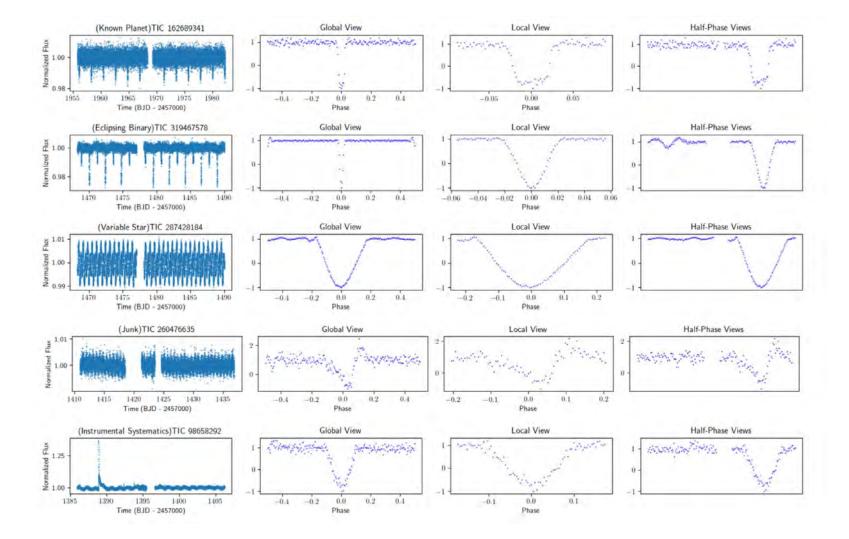


Box Least Squares (BLS - Kovács et al. 2002) - box-like transits

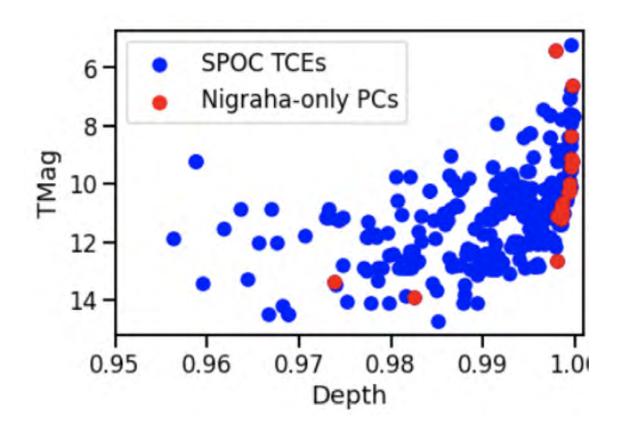
Global View

Transit Least-Squares (TLS - Hippke & Heller 2019) - shallow transits





Nigraha: Exoplanet candidates using TESS



Accuracy: 87.2% Precision: 88.8% Recall: 74.3%

HiRes/AO observations confirm non-binary

Rao, Mahabal, et al. 2020

Classifying spectra

Regularly spaced

Complications like redshift

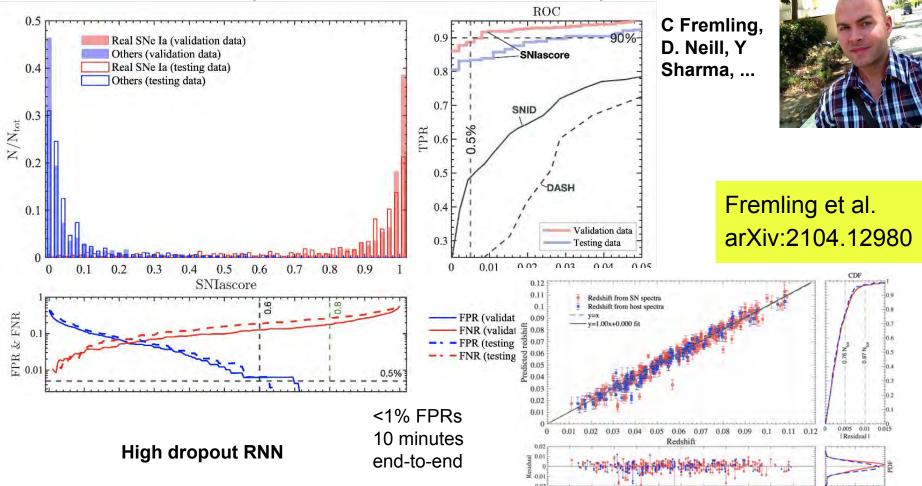
Examples:

ZTF SN la

ZTF all SN

Sasha's project

SN la classifier (SEDM Spectra ⇒ TNS)



Yashvi Sharma

Spectra

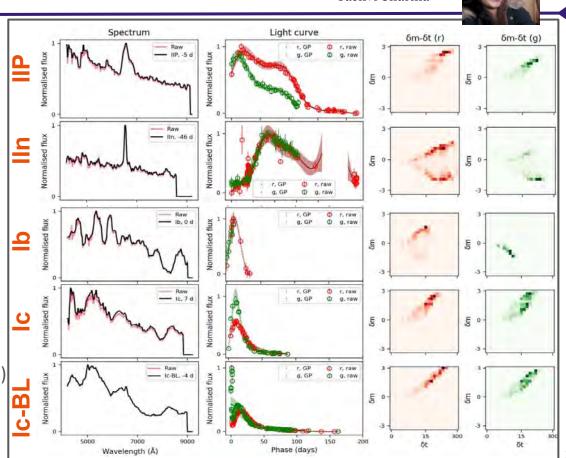
- Smoothed and normalised
- Option to deredshift

1D light curves (g and r bands)

- Interpolated to fix length (200 days) using Gaussian process regression
- Converted to linear flux
- Kept photometry with SNR > 3
- Normalised

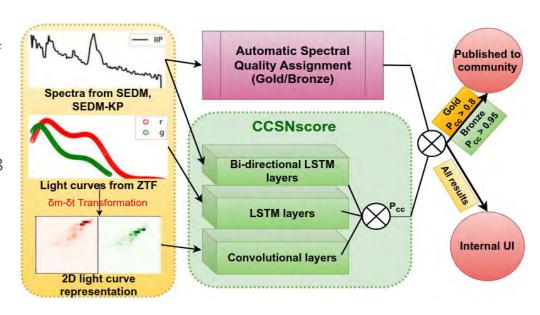
δm-δt representation

- 2D histogram created by taking pair-wise magnitude and time (phase) difference of interpolated LCs
- Normalised



Combined model

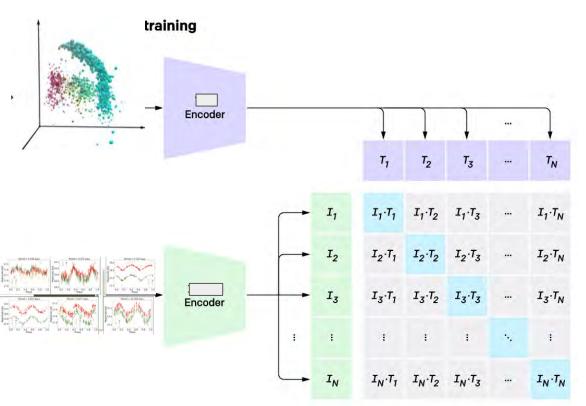
- ★ For SN II vs. SN Ibc classification task
 - With 'only spectra' channel, 79.4% of the gold test set gets classified with >0.98 scores, out of which 98.7% are accurate
 - With 'spectra+1D LC', 82.8% of the gold test set gets classified with >0.98 scores, out of which 98.0% are accurate
- ★ Expected real-time performance (TNS reporting)
 - 0.5% of true SNe Ia likely will get misclassified as CCSNe
 - 62% of true CCSNe expected to pass
 TNS reporting criteria, out of which
 94% will get correctly classified



The Supernova Zoo Type II Type Ib WICKY TRANSIENT FACILITY Helium? Type Ic Hydrogen? Type IIb eh? No Type Ia Yes Silicon? Hyperspectral imaging spectrograph Type I P.I. Pixis 2048 CCD

Variational Auto Encoders

Potential for science: immense



Contrastive Language-Image Pre-training (CLIP)

https://openai.com/blog/clip/

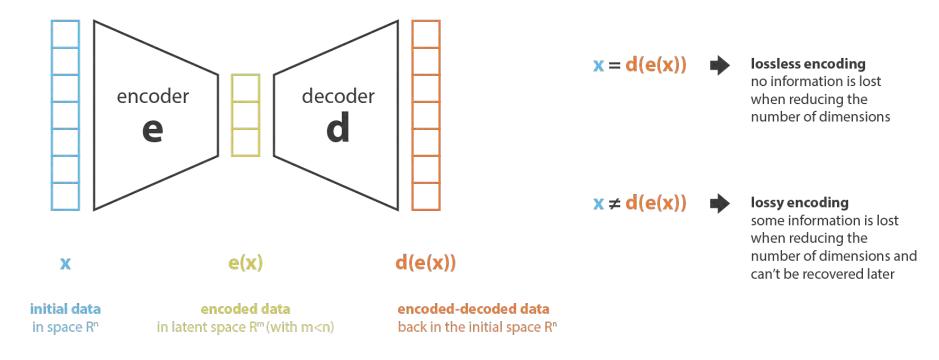
Overview of VAEs

Basic concept

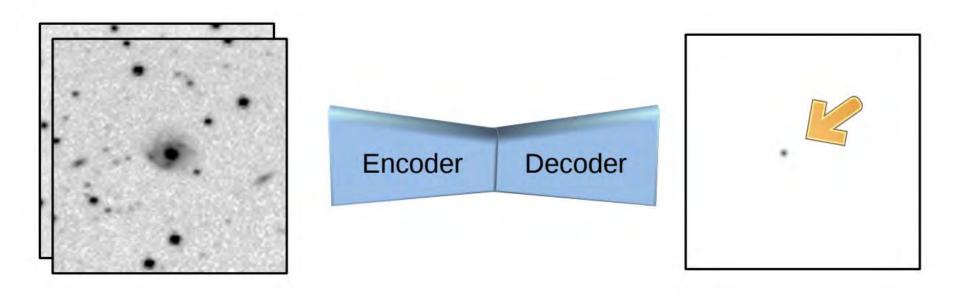
- Encoder maps data to latent space
- Decoder reconstructs data from latent space

Encoder and Decoder

- Encoder compresses data into latent variables
- Decoder reconstructs data from latent variables
- Uses variational inference for training

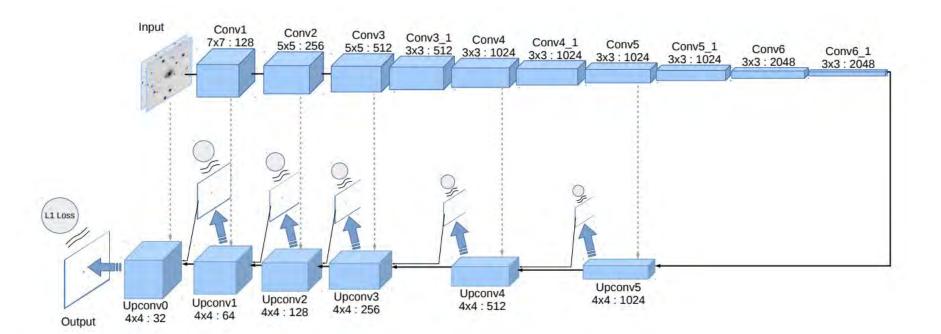


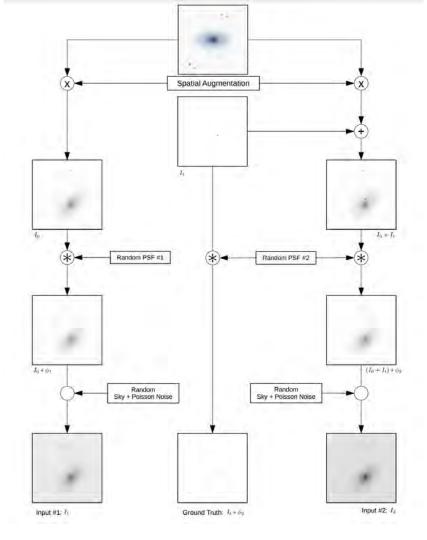
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



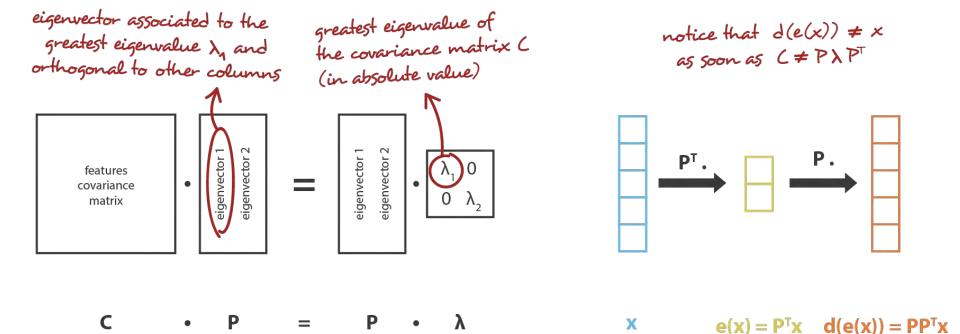
Sedaghat, Mahabal 1710.01422

 $11 = 10 * \phi 1 + S1 + N1$ $12 = (10 + 1t) * \phi 2 + S2 + N2$

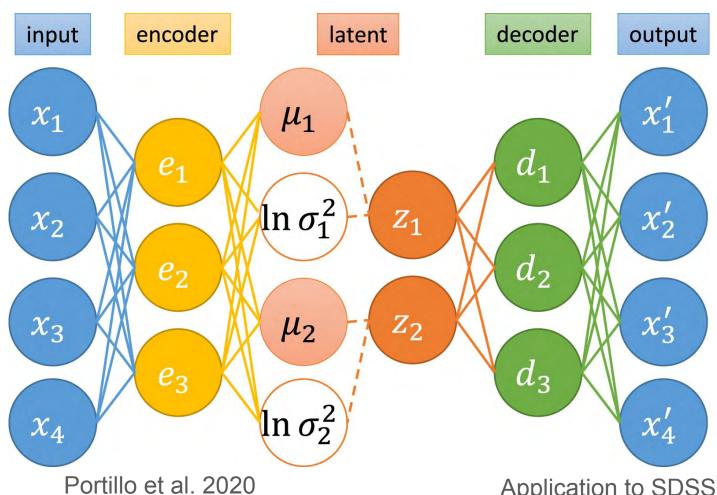




Has to incorporate physical conditions like the PSF



In principle anything could be used for dimensionality reduction (encoding). But neural networks are superior.



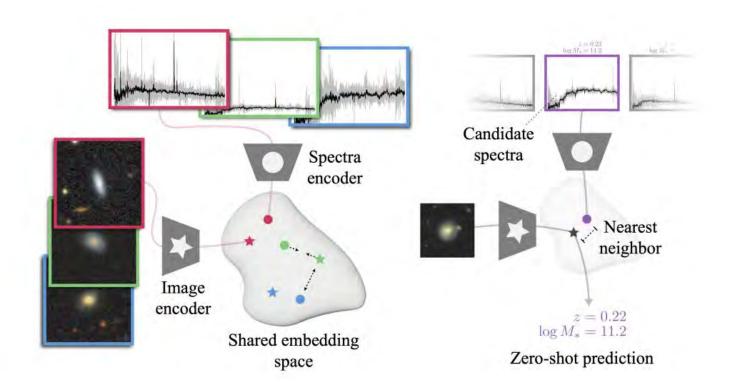
Application to SDSS spectra

Evidence lower bound (ELBO) is the objective function. It is the sum of the reconstruction loss and the Kullback–Leibler (KL) divergence between the latent distribution for the input q(z|x) and the prior p(z)

$$\mathrm{ELBO} = L(oldsymbol{x}, oldsymbol{x}') + D_{\mathrm{KL}}(q(oldsymbol{z}|oldsymbol{x})||p(oldsymbol{z})).$$

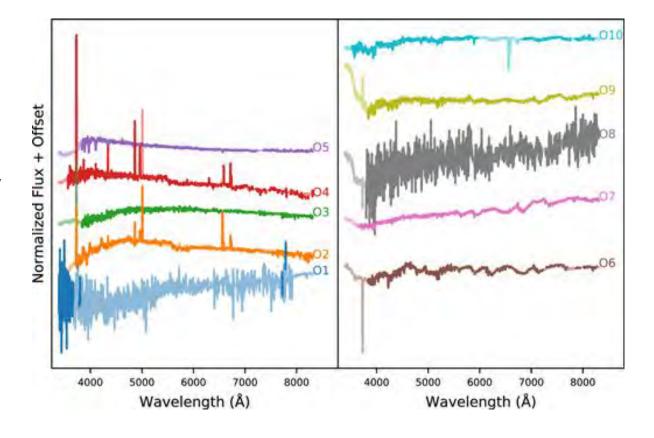
$$D_{ ext{KL}}(q||p) = \int q(z) \log\left(rac{q(z)}{p(z)}
ight) dz.$$

AstroCLIP (Lanusse et al. 2023) uses images and spectra of galaxies



Outlier detection

local outlier factor (LOF) algorithm (Breunig et al. 2000) is used to identify outliers. The algorithm estimates the local density of each point by using k nearest neighbors and then identifies points with densities much lower than their neighbors' as outliers.



Liang et al. 2023 find more interesting spectra in DESI using auto-encoders and normalizing flows

Combination of Probabilistic Modeling and Neural Networks

VAEs merge two powerful concepts: probabilistic graphical models and deep learning. This combination allows VAEs to leverage the strengths of both worlds:

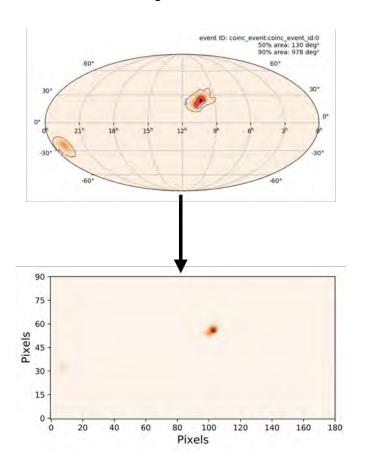
- Probabilistic Graphical Models: These models handle uncertainty and variability in data by modeling probability distributions.
- **Deep Learning**: Neural networks, particularly deep architectures, excel at learning complex patterns and representations from high-dimensional data.

Scalability and Flexibility

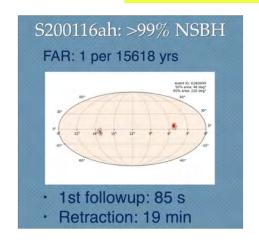
VAEs are scalable and flexible, making them applicable to various types of data:

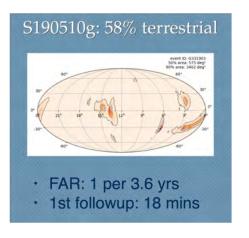
- Different Data Types: VAEs have been adapted to handle images, text, audio, and more.
- Complex Architectures: Extensions like Convolutional VAEs (for images) and Recurrent VAEs (for sequences) allow VAEs to handle complex, high-dimensional data efficiently.

GW SKyNet: a real-time classifier for public gravitational-wave candidates



arXiv:2010.11829 Cabero, Mahabal, McIver





Retractions

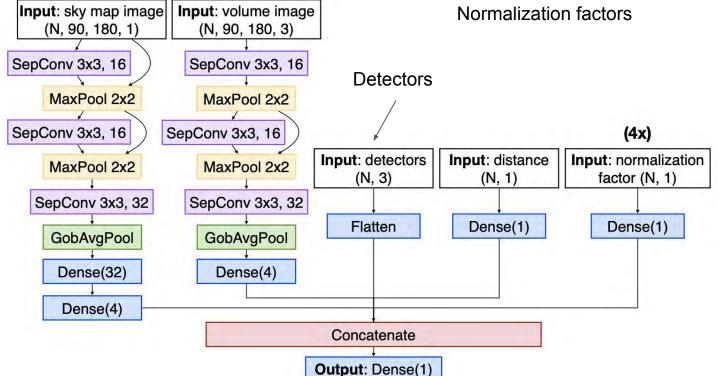
non-astrophysical

Can we identify these based on just public data?

GW SkyNet

SkyMap

Sky map: 90 x 180
Stacked volume: 90 x 180 x 3
detectors 3-bits (multihot encoding)
Posterior Mean Distance
Normalization factors



GWTC-2 the O3a catalog

4 Published GW 13 new 22 confirmed 7 retracted

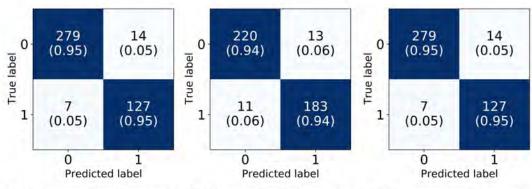
GWSkyNet verdict: 23 real 6 non-astrophysical

28/29 correct no reals called bogus

Name	Inst. cWB			GstLAL		PyCBC		PyCBC BBH				
		$FAR (yr^{-1})$	SNR*	$FAR (yr^{-1})$	SNR	$p_{ m astro}$	$FAR (yr^{-1})$	SNR^*	$p_{ m astro}$	$FAR (yr^{-1})$	SNR*	$p_{ m astro}$
GW190408_181802	HLV	$<9.5\times10^{-4}$	14.8	$<1.0\times10^{-5}$	14.7	1.00	$<2.5\times10^{-5}$	13.5	1.00	$<7.9\times10^{-5}$	13.6	1.00
GW190412	HLV	$<9.5\times10^{-4}$	19.7	$<1.0\times10^{-5}$	18.9	1.00	$<3.1\times10^{-5}$	17.9	1.00	$<7.9\times10^{-5}$	17.8	1.00
GW190413_052954	HLV	-	-	-	-	-	-	-	-	7.2×10^{-2}	8.6	0.98
GW190413_134308	HLV	-	-	3.8×10^{-1}	10.0	0.95	-	-	-	4.4×10^{-2}	9.0	0.98
GW190421.213856	HL	3.0×10^{-1}	9.3	7.7×10^{-4}	10.6	1.00	1.9×10^{0}	10.2	0.89	6.6×10^{-3}	10.2	1.00
GW190424_180648	L			7.8×10^{-1}	10.0	0.91						
GW190425	LV			$7.5 \times 10^{-4\dagger}$	13.0	-						
GW190426_152155	HLV	-	-	1.4×10^{0}	10.1	-	_	-	-	-	-	-
GW190503_185404	HLV	1.8×10^{-3}	11.5	$<1.0\times10^{-5}$	12.1	1.00	3.7×10^{-2}	12.2	1.00	$<7.9\times10^{-5}$	12.2	1.00
GW190512_180714	HLV	8.8×10^{-1}	10.7	$<1.0\times10^{-5}$	12.3	1.00	3.8×10^{-5}	12.2	1.00	$<5.7\times10^{-5}$	12.2	1.00
GW190513_205428	HLV	-	-	$<1.0\times10^{-5}$	12.3	1.00	3.7×10^{-4}	11.8	1.00	$<5.7\times10^{-5}$	11.9	1.00
GW190514_065416	$_{ m HL}$	-	-	-	-	-	-	-	-	5.3×10^{-1}	8.3	0.96
GW190517_055101	HLV	6.5×10^{-3}	10.7	9.6×10^{-4}	10.6	1.00	1.8×10^{-2}	10.4	1.00	$<5.7\times10^{-5}$	10.2	1.00
GW190519 ₋ 153544	HLV	3.1×10^{-4}	14.0	$<1.0\times10^{-5}$	12.0	1.00	$<1.8\times10^{-5}$	13.0	1.00	$<5.7\times10^{-5}$	13.0	1.00
GW190521	HLV	2.0×10^{-4}	14.4	1.2×10^{-3}	14.7	1.00	1.1×10^{0}	12.6	0.93	-	-	-
GW190521_074359	$_{ m HL}$	$<1.0\times10^{-4}$	24.7	$<1.0\times10^{-5}$	24.4	1.00	$<1.8\times10^{-5}$	24.0	1.00	$<5.7\times10^{-5}$	24.0	1.00
GW190527_092055	HL	-	-	6.2×10^{-2}	8.9	0.99	-	-	-	-	-	-
GW190602_175927	HLV	1.5×10^{-2}	11.1	1.1×10^{-5}	12.1	1.00	-	-	-	1.5×10^{-2}	11.4	1.00
GW190620_030421	LV			$2.9 \times 10^{-3\dagger}$	10.9	1.00						
GW190630_185205	LV			$<1.0\times10^{-5}$	15.6	1.00						
GW190701_203306	HLV	5.5×10^{-1}	10.2	1.1×10^{-2}	11.6	1.00	-	-	-	-	-	-
GW190706-222641	HLV	$<1.0\times10^{-3}$	12.7	$<1.0\times10^{-5}$	12.3	1.00	6.7×10^{-5}	11.7	1.00	$<4.6\times10^{-5}$	12.3	1.00
GW190707_093326	HL	-	-	$<1.0\times10^{-5}$	13.0	1.00	$< 1.0 \times 10^{-5}$	12.8	1.00	$< 4.6 \times 10^{-5}$	12.8	1.00
GW190708_232457	LV			$2.8 \times 10^{-5\dagger}$	13.1	1.00						
GW190719_215514	HL	_	_	-	_	_	_	_	_	1.6×10^{0}	8.0	0.82
GW190720_000836	HLV			$<1.0\times10^{-5}$	11.7	1.00	$< 2.0 \times 10^{-5}$	10.6	1.00	$<3.7\times10^{-5}$	10.5	1.00
GW190727_060333	HLV	8.8×10^{-2}	11.4	$<1.0\times10^{-5}$	12.3	1.00	3.5×10^{-3}	11.5	1.00	$<3.7\times10^{-5}$	11.8	1.00
GW190728_064510	HLV	-	-	$<1.0\times10^{-5}$	13.6	1.00	$< 1.6 \times 10^{-5}$	13.4	1.00	$<3.7\times10^{-5}$	13.4	1.00
GW190731_140936	HL	_	-	2.1×10^{-1}	8.5	0.97	-	-	-	2.8×10^{-1}	8.2	0.96
GW190803_022701	HLV	_	-	3.2×10^{-2}	9.0	0.99	_	-	-	2.7×10^{-2}	8.6	0.99
GW190814	LV			$<1.0\times10^{-5}$	22.2	1.00						
GW190828_063405	HLV	$<9.6\times10^{-4}$	16.6	$<1.0\times10^{-5}$	16.0	1.00	$<1.5\times10^{-5}$	15.3	1.00	$<3.3\times10^{-5}$	15.3	1.00
GW190828_065509	HLV	_	-	$<1.0\times10^{-5}$	11.1	1.00	5.8×10^{-5}	10.8	1.00	$<3.3\times10^{-5}$	10.8	1.00
GW190909_114149	$_{ m HL}$	-	-	1.1×10^{0}	8.5	0.89	-	-	-	-	-	-
GW190910_112807	LV			$1.9 \times 10^{-5\dagger}$	13.4	1.00						
GW190915_235702	HLV	$< 1.0 \times 10^{-3}$	12.3	$<1.0\times10^{-5}$	13.1	1.00	8.6×10^{-4}	13.0	1.00	$<3.3\times10^{-5}$	12.7	1.00
GW190924_021846	HLV	-	_	$<1.0\times10^{-5}$	13.2	1.00	$< 6.3 \times 10^{-5}$	12.5	1.00	$<3.3\times10^{-5}$	12.4	1.00
GW190929_012149			_	2.0×10^{-2}	9.9	1.00	_	_	_	_	_	_
GW190930_133541	HL		_	5.8×10^{-1}	10.0		3.4×10^{-2}	9.7	1.00	3.3×10^{-2}	9.8	0.99

TABLE IV. Gravitational wave candidate event list. We find 39 candidate events passing the FAR threshold of $2.0~\mathrm{yr}^{-1}$ in at

Excellent performance

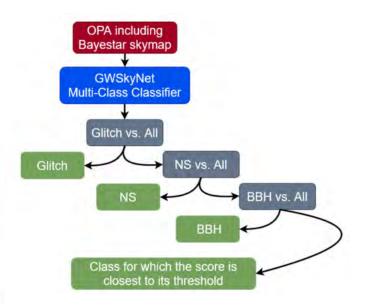


(a) Gl	itch-versus-all	confusion	matrix.	
--------	-----------------	-----------	---------	--

(b) NS-versus-all confusion matrix.

(c) BBH-versus-all confusion matrix.

Candidate Name	GraceDB Label	GWSkyNet Binary	Glitch Score (%)	NS Score (%)	BBH Score (%)	Hierarchical Prediction
S191105e	BBH	Glitch	0.1	0	98.7	BBH
S191109d	BBH	Real	15.6	0	100	BBH
S191110x	RETRACTED	Real	90.2	86.6	17.9	$Glitch^{\dagger}$
S191117j	RETRACTED	Real	100	70.2	6.5	$Glitch^{\dagger}$
S191120aj	RETRACTED	Glitch	92.8	34	0.1	Glitch
S191120at	RETRACTED	Real	99.4	98.7	27	$Glitch^{\dagger}$
S191124be	RETRACTED	Glitch	95.1	91.2	5.6	$Glitch^{\dagger}$
S191129u	BBH	Real	0.8	0.5	77.1	BBH
S191204r	BBH	Real	0.1	3.1	84.1	BBH
S191205ah	NSBH	Glitch	50.4	97	0.1	$Glitch^{\dagger}$
S191212q	RETRACTED	Real	49.8	100	1.9	$Glitch^{\dagger}$
S191213ai	RETRACTED	Glitch	98.3	92.1	0	$Glitch^{\dagger}$
S191213g	BNS	Real	3	2.4	2.7	BBH*
S191215w	BBH	Real	0.1	0	100	BBH
S191216ap	BBH	Real	1.7	83.4	43.2	NS^{\dagger}



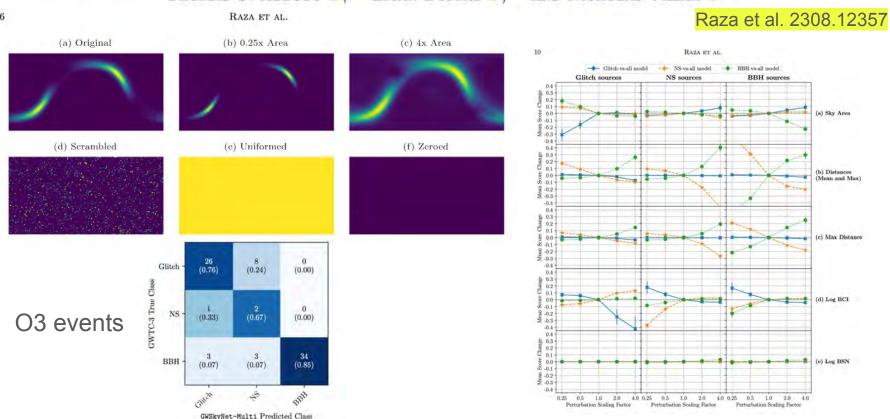
GW SKyNet-Multi

Abbott et al. 2011.04015

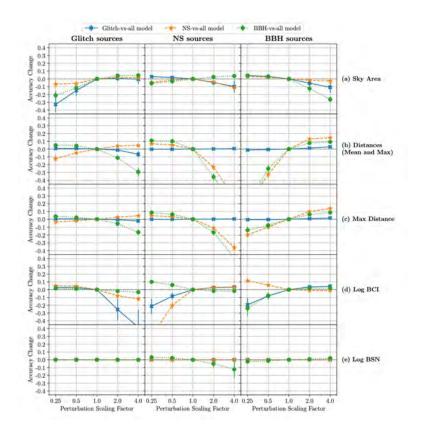
Does great! But WHY??

Explaining the GWSkyNet-Multi machine learning classifier predictions for gravitational-wave events

Nayyer Raza , ^{1,2} Man Leong Chan , ³ Daryl Haggard , ^{1,2} Ashish Mahabal , ^{4,5} Jess McIver , ³ Thomas C. Abbott , ^{1,2} Eitan Buffaz , ^{1,2} and Nicholas Vieira , ^{1,2}



Perturbations



Strong glitch predictors:

- Localization area of the 2D sky maps
- Computed coherence versus incoherence Bayes factors

Strong real subclassifier:

Estimated distance to the source

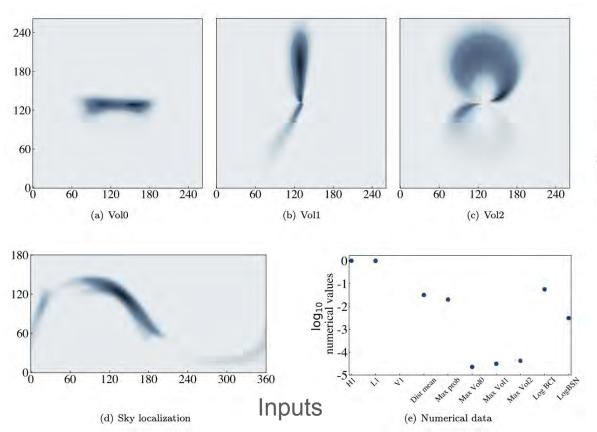
Note used:

Signal versus noise Bayes factors

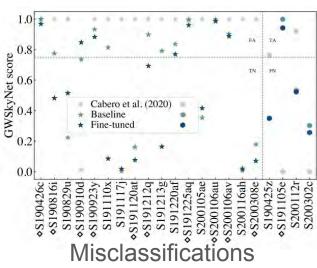
Helps us understand our models better

Better distributions needed for training!

Refined GWSkyNet part of LVK's low latency pipeline



Chan et al. 2408.06491



The Fine-tuned model rejects >80% noise while capturing >93% astrophysical signals

Other

Neutrino

Cosmology

(graph neural networks)

(normalizing flows)

Interpretability and explainability Linardatos, Create White-Box / Papastefanopoulos, Interpretable Models Kotsiantis 2020 (Intrinsic) Post-hoc Explain Black-Box / Local: Explain a Single Complex Models Prediction (Post - Hoc) LIME: Local Purposes of Interpretability Interpretable Local vs Global Enhance Fairness of a Model-agnostic Global: Explain the Model **Explanations** overall model Test Sensitivity of SHAP: Interpretability Predictions Tabular Shapley Methods Additive **Explanations** Text Model Specific: Can be applied to a single model Data Types Model Specific or group of models **Image** Model Agnostic Model Agnostic: Can be Graph **Fairness** applied to any model